Mapping pediatric injuries to target prevention, education, and outreach

Camille L. Stewart a,⁎, Shannon N. Acker a, Laura Pyle b, Dwayne S. Smith c, Denis D. Bensard a,d,e, Steven L. Moulton a,e

a Department of Surgery, University of Colorado School of Medicine, Aurora, CO, United States
b Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
c Children's Health Advocacy Institute, Children's Hospital Colorado, Aurora, CO, United States
d Department of Surgery, Denver Health Medical Center, Denver, CO, United States
e Department of Surgery, Children's Hospital Colorado, Aurora, CO, United States

ABSTRACT

Background: Initiatives exist to prevent pediatric injuries, but targeting these interventions to specific populations is challenging. We hypothesized that mapping pediatric injuries by zip code could be used to identify regions requiring more interventions and resources.

Methods: We queried the trauma registries of two level I trauma centers for children 0–17 years of age injured between 2009 and 2013 with home zip codes in our state. Maps were created to identify outlier zip codes. Multivariate linear regression analysis identified predictors within these zip codes.

Results: There were 5380 children who resided in the state and were admitted for traumatic injuries during the study period, with hospital costs totaling more than 200 million dollars. Choropleth mapping of patient addresses identified outlier zip codes in our metro area with higher incidences of specific mechanisms of injury and greater hospital charges. Multivariate analysis identified demographic features associated with higher rates of pediatric injuries and hospital charges, to further target interventions.

Conclusions: We identified outlier zip codes in our metro area with higher frequencies of pediatric injuries and higher costs for treatment. These data have helped obtain funding for prevention and education efforts. Techniques such as those presented here are becoming more important as evidence based public health initiatives expand.

Level of evidence: Type of Study: Cost Effectiveness, II.

© 2016 Elsevier Inc. All rights reserved.

Traumatic injuries account for significant morbidity, mortality, and economic burden in the United States. Unintentional injuries are the single greatest cause of death for individuals 1–44 years of age [1], and annual rates of non-fatal injury are as high as 13% in this age bracket [2]. These injuries are responsible for billions of dollars in annual medical care costs [3], and many of these injuries are preventable. This is especially true of children, for whom there are several proven ways to reduce both the likelihood and severity of traumatic injuries [4].

In our metro area there are numerous childhood injury prevention and outreach programs. The application of prevention efforts is, however, somewhat uneven and largely dictated by available resources and personnel in a given area. This is because no specific data exist regarding the locations of greatest need. We hypothesized that certain zip codes within our metro area would have higher frequencies of pediatric traumatic injuries and higher hospital charges for the treatment of these injuries. We further hypothesized that injury related predictors within these zip codes could be identified. To study this, we systematically examined all children treated for traumatic injuries at two level-1 trauma centers, and mapped them by zip code of residence.

1. Materials and methods

After institutional review board approval, we queried the trauma databases of two pediatric trauma centers (PTC) (Children’s Hospital Colorado (PTC level 1) in Aurora, Colorado and Denver Health Medical Center (PTC level 2) in Denver, Colorado) for all children aged 0–17 years who were evaluated in the emergency department or directly admitted as an inpatient following traumatic injuries from 1/2009 to 9/2013, and had a known home zip code in the state of Colorado. Children with zip codes associated with P.O. boxes were excluded from this study (n = 8). Next, we identified children whose home zip code was in one of two adjacent cities, Denver or Aurora, Colorado, where 20% of the state’s population reside. All subsequent analysis focused on this population. According to the Colorado Department of Public Health and Environment, 80% of traumatically injured children who were living in Denver or Aurora, Colorado during the study period went to one of the two hospitals in this study. Cost data were calculated using total patient charges for the hospitalization. Data were available for all categories, except where otherwise noted.

⁎ Corresponding author at: Department of Surgery, University of Colorado School of Medicine, 12631 E. 17th Ave., C302, Aurora, CO 80045, United States. Tel.: +1 303 724 2885.
E-mail address: Camille.stewart@ucdenver.edu (C.L. Stewart).

http://dx.doi.org/10.1016/j.jpedsurg.2016.12.023
0022-3468/© 2016 Elsevier Inc. All rights reserved.
1.1. Mapping

Choropleth maps were created to identify outlier zip codes for pediatric injuries in these cities. Choropleth maps use shading relative to the measurement of a given variable and provide a means to visualize variation across a region. Choropleth maps were created using zip code and primary and secondary road state shape files downloaded from the U.S. census bureau (2010 TIGER/Line Shapefile: Zip Code Tabulation Areas, Colorado; 2013 TIGER/Line Shapefile, Colorado, Primary and Secondary Roads). These shape file data were overlaid atop satellite imagery of the region downloaded from the Earth Science Data and Information System Project [5,6]. A computer script was written in Python by the first author to “color in” the choropleth framework with the relevant data from the trauma database using trauma codes. This computer script is available upon request to any interested party.

1.2. Theory and calculation

Zip code demographics from the 2010 census and the 2008–2012 American Community Survey were used for comparison [7]. Demographics used in our analyses included median household income, racial demographics, percent owner occupied housing, percent with some college education, percent households married with children and single parents, and total population. Demographic predictors of pediatric traumatic injuries in specific zip codes were then identified using univariate and multivariate linear models. Because of nonnormal distribution of outcome variables, all outcome variables were log-transformed (after addition of 1×10^{-11} to all values so that zero values could be log-transformed) prior to analysis. Statistical differences were considered significant if the probability of a type I error was <5% ($p < 0.05$). All analyses were performed using SAS version 9.4 (Cary, NC).

2. Results

2.1. Demographics

We identified 5380 children who were Colorado residents treated for a traumatic injury during the study period (332 different zip codes). Hospital charges for this group during the study period totaled $201 million. Fifty-eight (1.1%) injuries were fatal. More deaths were related to nonaccidental (abusive) trauma than any other mechanism (26/58, 44.8%), and motor vehicle crashes accounted for the greatest proportion of unintentional deaths (9/32, 28.1%). More than half of the children identified (2730, 50.7%) lived in the immediate metro area consisting of the cities of Denver and Aurora, Colorado (53 zip codes). Demographics of these children are presented in Table 1. The majority of these children were Caucasians, males, and children with minor injuries.

2.2. Maps

Choropleth maps were created to identify zip codes in our immediate metro area that had higher frequencies of pediatric traumatic injuries, including burns, nonaccidental traumas, and motor vehicle, bicycle, trampoline, and auto-pedestrian related injuries. Fig. 1 shows a sample of the maps that were created. For each injury type, there were outlier zip codes with a higher proportion of injuries. We also mapped total charges for treatment of all pediatric traumatic injuries in each zip code (Fig. 2), and identified outliers. Four out of 53 zip codes accounted for 27% of all charges in the immediate metro area; two zip codes had average charges of over one million dollars per year for the treatment of pediatric injuries.

2.3. Multivariate linear regression analysis

Multivariate linear regression analysis was used to identify predictors of pediatric injuries by zip code. Demographic data from the US census bureau were used to adjust for confounding factors. Higher rates of pediatric traumatic injuries were associated with zip codes that had larger Hispanic populations, fewer owner occupied homes, and more married couples with children (Table 2). Higher total hospital charges were associated with zip codes that had fewer owner occupied homes, more married couples with children, and higher populations (Table 3). Demographic factors that were predictive of higher rates of specific types of traumatic injury were also identified. We found that zip codes with greater populations had higher rates of burn injuries, auto-pedestrian injuries, and sports related injuries when compared to zip codes with fewer residents (Table 4).

2.4. Outcomes

Data for bicycle related injuries, auto-pedestrian accidents, and teenagers in motor vehicle crashes were presented to the state department of transportation. As a result, 5 different elementary schools located in the zip codes of greatest need were given grant awards to fund expanded bicycle and pedestrian safety education. A grant was also awarded for teen driver safety education and outreach in the metro area.

3. Discussion

We examined types, frequencies, and costs of pediatric traumatic injuries by zip code level to identify populations that would benefit most from injury prevention efforts. Several of our findings mirror those found in the CDC’s Childhood Injury Report [4], including a large number of falls, and motor vehicle crashes accounting for the majority of unintentional fatal injuries. Choropleth mapping allowed the identification of outlier zip codes for both higher frequencies of specific types of pediatric injuries, and higher hospital charges for the treatment of pediatric injuries. Multivariate analysis identified predictive demographic features that were associated with higher rates and costs for pediatric injury, including zip codes that had fewer owner occupied homes, more married couples with children, and higher overall populations. This

| Table 1 |
|-----------------|-----------------|-------------------|
| Demographic | State (n = 5380)| 2-city metro area (n = 2730) |
| Male (%) | 3428 (63.7) | 1755 (64.2) |
| Age in years (STE) | 6.9 (0.1) | 6.8 (0.1) |
| ISS (n = 5327) (STE) | 7.2 (0.1) | 6.6 (0.1) |
| Race, n (%) | 5101 | 2596 |
| Caucasian | 3146 (58.5) | 1291 (48.7) |
| Hispanic | 1267 (23.6) | 774 (29.8) |
| African American | 305 (5.7) | 271 (10.4) |
| Asian | 117 (2.2) | 67 (2.6) |
| Other | 266 (4.9) | 194 (7.5) |
| Insurance type, n (%) | 4828 | 2460 |
| Private | 2746 (51.0) | 1136 (46.2) |
| Medicaid | 2007 (37.3) | 1269 (51.6) |
| None | 75 (1.4) | 55 (2.2) |
| Length of stay (n = 4859), days (STE) | 2.4 (0.1) | 2.1 (0.1) |
| Charges/patient, dollars (STE) | $37,382 (1322) | $33,960 (1744) |
| Mechanism, n (%) | 5040 | 2707 |
| Falls | 2074 (41.1) | 1131 (41.8) |
| Motor vehicle crashes | 408 (8.1) | 221 (8.2) |
| Sports related | 348 (6.9) | 283 (10.5) |
| Bicycle related| 320 (6.3) | 159 (5.9) |
| Burns | 287 (5.7) | 136 (5.4) |
| Non-accidental | 246 (4.9) | 119 (4.4) |
| Auto-pedestrian| 203 (4.0) | 145 (5.4) |
| Trampoline related | 136 (2.7) | 48 (1.8) |
| Gunshot wounds | 55 (1.0) | 38 (1.4) |
| Fatal injuries, n (%) | 58 (1.1) | 37 (1.4) |
| Non-accidental | 26 (4.48) | 15 (4.05) |
| Motor vehicle crashes | 9 (1.53) | 4 (1.08) |

STE = standard error; ISS = injury severity score.
information was later used to target pediatric trauma prevention, outreach, and education efforts in the areas of greatest need. A similar mapping analysis will be performed in the future to measure the success of these interventions at decreasing the number of injuries and the overall cost of treatment. This information could then be used to help obtain additional funding for those successful interventions.

As the political and economic climates shift toward price conscious medical consumerism, efforts to reduce spending are becoming more important. Funders, particularly private and governmental agencies, are mandating that preventative interventions be evidence-based, and able to measure specific outcomes [8–10]. It is known that the cost of treating pediatric traumatic injuries can be offset by increased prevention efforts [11], and savings in the billion-dollar range can be achieved with appropriate injury prevention strategies [12]. Examples of pediatric trauma prevention initiatives that have been publicized include high-visibility enforcement of child restraint laws [13,14], child restraint distribution programs [15], elementary age child pedestrian training [16,17], bicycle helmet laws [18], bicycle education for children [19], parent training programs focused on child maltreatment [20], and community education for pediatric burn prevention [21]. In a similar study, Slaughter et al. [22] used “hot spot” mapping to identify the most common locations for auto-pedestrian and auto-bicycle accidents. They determined that these were not random accidents but instead occurred at predictable and identifiable locations, thus allowing for tailored injury prevention strategies at specific locations. Our study

Table 2

Multivariate analysis for pediatric traumatic injury frequency by zip code demographic.

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Estimate</th>
<th>Standard error</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Hispanic</td>
<td>0.031</td>
<td>0.012</td>
<td>0.01</td>
</tr>
<tr>
<td>Percent married with children</td>
<td>0.040</td>
<td>0.017</td>
<td>0.03</td>
</tr>
<tr>
<td>Percent owner occupied housing</td>
<td>-0.015</td>
<td>0.007</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Fig. 1. Example choropleth maps showing variation in frequency and type of pediatric traumatic injuries across the 2-city metro area.

Fig. 2. Choropleth map of total hospital charges by zip code in the 2-city metro area.
identified locations within our community with the highest rates of spe-
cific types of pediatric traumatic injuries. This choropleth mapping can
help provide a “dashboard” of the disease of childhood injury in our
city and can be used in combination with existing pediatric injury data
to design prevention efforts that maximize effectiveness and resource
utilization. Data presented in this fashion also facilitate “buy-in” from
public officials, which is critical to success with public health interven-
tions [23]. Our easily interpretable data have already helped generate
additional funding for several schools in hot-spot zip codes for pediatric
bicycle injuries and auto-pedestrian accidents.

There are several limitations to this study. The data presented are
from children who were treated at two hospitals in the Denver metro
area. While comprising 80% of injured children treated at hospitals in
the metro area, this still represents a convenience sample. These data
do not account for scene deaths and children who were injured but
not evaluated by a medical provider or children who were injured but
seen in a clinic or an emergency department at one of the many other
hospitals in the city. Some of the injuries children sustained in this
study may have occurred outside the home, and it might be suggest
that zip code targeting cannot be applied because injuries possibly oc-
curred elsewhere. Prevention strategies exist for the majority of pedi-
atriic injuries, however, and arguably are best applied starting in the
patient’s home. Further, epidemiologic studies of pediatric injuries
show that the majority of injuries occur at home for children up to
5 years old [24]. Older children tend to be injured more often in sports
areas or at school [24], but these are also likely to be located within
the same zip code as the child’s residence.

Our multivariate analysis may be skewed because one of the trauma
centers included in this study is free of charge to residents of the city
who are unable to pay for care, possibly attracting patients of lower so-
cioeconomic status. This may explain why zip codes with higher popu-
lations of specific ethnic groups and lower rates of home ownership
were identified as targets. Conversely, it is expected that zip codes
with more people and more children would have higher rates of pediat-
ric injuries. It is also unclear why zip codes with more pediatric injuries
had higher percentages of households married with children. This is
contradictory to some studies examining injury rates in children from
married and single parent households [25,26], however there is a pauc-
ity of recent literature on this subject and may warrant further study.

Data presented here are also based on frequency alone, and not on
rates adjusting for population density. This is because values for rates
are exceedingly small and become difficult to interpret, especially
when looking at specific injury types where event numbers are <20.
The type of analysis presented here was done only including our
metro area, and can only be performed in cities where injury numbers
are high enough and zip codes are small enough to appropriately target
interventions. Despite these limitations, our data remain valuable

because they provide a technique to identify communities in need,
and can easily be used as an adjunct to existing methods for targeting
interventions.

4. Conclusion

Traumatic injuries are a major source of morbidity and mortality for children. There are several proven methods for the prevention of pedi-
atriic injuries, however limited resources mandate targeting the areas in
greatest need. Mapping data from trauma registries by zip code can
be used to help define the communities within cities where prevention
efforts should be focused. Several “hot-spots” were identified in our
metro area using this technique. Statistical analysis also identified pre-
dictors of pediatric injuries. In the future, similar analyses will be per-
fomed to measure the effect of pediatric injury prevention efforts.
Using this strategy with similar assessments over time will help identify
the most effective methods for injury prevention. Statistical techniques,
such as those presented here, are becoming more important as funding
agencies are more often requiring public health initiatives to be evi-
dence based.

Source of funding

This research did not receive any specific grant from funding agen-
cies in the public, commercial, or not-for-profit sectors.

Acknowledgments

The authors would like to thank Scott Beckley at the Colorado De-
partment of Public Health and Environment for his assistance in
obtaining the total number of children treated in the Denver metro
area for traumatic injuries during the data period.

References

[1] 10 Leading causes of death, United States, 2007, all races, both sexes. WISQARS,
Atlanta, GA: Office of Statistics and Programming, National Center for Injury Preven-
cdc.gov/injury/wisqars/fatal.html. (accessed 1403.03)].

[2] Overall all injury causes of nonfatal injuries and rates per 100,000. 2012, United
States, all races, both sexes, all ages. WISQARS, Atlanta, GA: National Center for Inj-
ury Prevention and Control, Centers for Disease Control and Prevention; 2012 [http://
www.cdc.gov/injury/wisqars/nontfatal.html. (accessed 1403.03)].

[3] U.S. Department of Health and Human Services Centers for Disease Control and
Prevention, National Center for Injury Prevention and Control. CDC Injury Research

[4] U.S. Department of Health and Human Services Centers for Disease Control and
Prevention, National Center for Injury Prevention and Control. CDC childhood injury
report: patterns of unintentional injuries among 0–19 Year olds in the United States 2000–

ical encoding and referencing/line shapefiles 2013 https://www.census.gov/geo/
mapdata/data/tiger/html ; 2013 [accessed 2014.02.24].

Directorate at Goddard Space Flight Center, US National Aeronautics and Space
Administration https://earthdata.nasa.gov/about/esdis-project; 2013 [accessed
2014.02.24].

Available at: http://factfinder2.census.gov/faces/nav/jsf/pages/index.xhtml; 2010.
[accessed 1406.06].

[9] Kohatsu ND, Robinson JC, Torner JC. Evidence-based public health: an evolving con-

Countermeasures that work: a highway safety countermeasure guide for state high-
publishations/countermeasures.html . 2011 [accessed 2013.08.14].

Reviews of evidence regarding interventions to increase use of child safety seats. Am
Identifying strategies to improve the effectiveness of booster seat laws. Publication No. DOT HS 810 969; 2009 [accessed 2014.04.22].

